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Sensitivity of convective structures to mean flow boundary conditions:
A correlation between symmetry and dynamics
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Various simple structures have been proposed for modeling the transition to time dependence of convective
patterns in extended geometries. In order to further question their relevance to the dynamics of complex
structures~textures!, we introduce a change of boundary conditions from both an experimental and a theoreti-
cal side. It consists in keeping the same roll structure but in separating the boundaries of the mean flows from
those of the roll flows. This induces negligible effects on symmetric structures~straight rolls and foci! but
dramatic changes on asymmetric ones~focus pairs and textures!, especially regarding the onset of time depen-
dence. Both kinds of sensitivity to this change of boundary conditions are recovered from the Cross-Newell
equations. They reveal a correlation between symmetry and dynamics that prevents symmetric structures from
modeling asymmetric ones. On the opposite side, they point to focus pairs as a plausible prototype of the
mechanisms of time-dependence at work in textures.@S1063-651X~96!03912-8#

PACS number~s!: 47.27.Cn, 47.20.Lz, 47.20.Bp
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I. INTRODUCTION

Owing to nonlinear interactions between spatial mod
extended out-of-equilibrium systems provide fascinating
complex dynamics, still far from being understood. This h
motivated a great deal of effort to model the interplay b
tween their spatial and dynamical features@1#. The present
work aims at improving the selection of such models in
well-controlled dissipative system: the Rayleigh-Be´nard
thermoconvection in moderate aspect ratio containers
small Prandtl number fluids.

In extended containers and close to the convective thr
old, the convective structures generated without specific
duction usually involve spatially disordered rolls showi
curvature and defects@1#. However, in between defects
these so-called textures display much more ordered subs
tures. Their geometry, much simpler than those of textu
are close to those displayed by the following model str
tures: straight rolls, axisymmetrical rolls~hereafter called fo-
cus!, two patches of curved rolls facing each other~hereafter
called focus pair!, and, in large aspect ratio containers, spi
rolls.

In moderately large containers, the behavior of mo
structures has been satisfactorily understood with a rea
able agreement between theories and experiments@1–3#. Ac-
cording to theories, important qualitative differences b
tween model structures are in order however: infinite stra
rolls provide large scale instabilities@4# and no intrinsic
wavelength selection@5,6#: axisymmetrical rolls provide
both an intrinsic selection mechanism@7,8# and a large-scale
instability breaking their rotational symmetry@9,10#; focus
pairs provide wavelength gradients and small-scale insta
ties yielding the nucleation of propagating defects@11–13#.

Owing to these qualitative distinctions, one might exp
that the identification of the structure suitably modeling te
tures should be an easy task. This is not the case howeve
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the following reasons. First, in moderate aspect ratios,
periments show that the symmetry breaking undergone
foci yields steady states whose routes to time depende
actually display features similar to those observed in fo
pairs: wavelength gradients and small-scale instabilities@14–
19#. Second, both foci and focus pairs exhibit at any Pran
number almost the same onsets for time dependence, at
ues similar to those displayed by textures@20–24#. From the
experimental side, both the qualitative and quantitative f
tures of these model structures are thus actually so close
it is not possible to decide which of them captures t
mechanisms responsible for texture behavior.

In order to improve the study of model structures a
their comparison with textures, we propose to modify t
boundary conditions applied to convective structures. T
change consists in separating the boundaries relevant to
primary roll flows from those relevant to the secondary me
flows by translating the latter into the conductive doma
This, applied to focus pairs, has already revealed a la
inhibition of time dependence through an increase of th
onset by a factor of ten@25#. The purpose of the presen
study consists in generalizing this change of configuration
all model structures and to textures.

Two different classes of behaviors are found depend
on the structure: one involving a negligible change of t
onset of time dependence and the other a spectacularly l
one. The first class includes straight rolls and foci; the la
contains focus pairs and textures. These quite different s
sitivities to a change of boundary conditions show that f
and focus pairs are not physically equivalent. Furthermo
for the present moderate aspect ratio container and s
Prandtl number, texture behaviors appear compatible wi
modelization by focus pairs but incompatible with a mod
ization by foci.

The respective origins of the two different classes
identified by analytically studying model structures. They
veal an essential role of asymmetric spatial distortions, wh
353 © 1997 The American Physical Society
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354 55A. POCHEAU AND F. DAVIAUD
ever their magnitude, in this convective system.
The paper is organized as follows. Section II introduc

the so-called ‘‘open containers’’ in which the boundary co
ditions are implemented. The experimental results and
theoretical analysis are presented in Secs. III and IV, res
tively. Their consequences are drawn in Sec. V and the c
clusion of the study is reported in Sec. VI.

II. OPEN CONTAINERS

The principle of open containers is based on the seco
ary mean flows generated by convection in extended ge
etries. We recall their relevance to pattern dynamics in S
II A before addressing the definition and the main features
open containers.

A. Mean flows

Apart from other nonvariational effects, an important ph
nomenon breaking variationality has been pointed out
Siggia and Zippelius on the Boussinesq equations@26#. It
consists of mean flows spontaneously produced, at fi
Prandtl number, by unbalanced Reynolds stresses, the
flows playing the role of anisotropic fluctuations.

Usually, these flows result from roll distortion and have
scale large compared to the roll width. They have been
denced by tracer advection on asymmetric foci@16#. They
interact with rolls by an advection forcing that may end
new pattern instabilities@29,9–13#, wave-number gradient
@28,12# , and time dependence@9–13#. They also induce non
locality, first because, as any incompressible flow, they
nonlocally related to their sources and, second, because
advection forcing generates nonlocal interactions betw
rolls. All the theories proposed for model structures actua
rely on them@9–13,27#.

B. Definition of open containers

Since both convective flows and mean flows are involv
in convective structures, it makes sense dealing with th
respective boundaries. We denote by ‘‘closed’’ contain
the usual containers where the boundaries for mean fl
and for convective flows are located at the same place. T
are simply achieved by enclosing the convective domain b
rigid wall.

In contrast, we define as ‘‘open’’ containers the conta
ers in which these boundaries are distant from each ot
Since convection is a source of mean flow at finite Pran
number, the only achievable configuration in practice cor
sponds to a mean flow boundary located outside the con
tive domain. This gives rise to three different regions:
inner convective zone, an outer conductive zone, and an
terface in-between@Fig. 1~a!#.

The main difference between these domains traces bac
the potential or rotational nature of mean flows. Since
self-advection of mean flows is negligible~see Appendix A!,
the mean vertical vorticity only results from a balance b
tween diffusion and forcing by mean Reynolds stress
However, in both the convective and the conductive d
mains, the horizontal scale of variations of the relevant fie
is so large compared to the cell depth that the vertical di
sion dominates the horizontal diffusion. Mean vertical vo
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ticity is then directly linked, at each location, to mean Re
nolds stresses, and thus vanishes in the conductive dom
Mean flows are therefore rotational in the inner zone a
potential in the outer zone@Fig. 1~a!#. Their nature within the
interface is addressed in Sec. IV A 2.

C. Realization

Realizing open containers requires annihilating the r
flow in an outer zone while preserving the mean flow. Ta
ing advantage of the sensitivity of the Rayleigh number
to the cell depthd, Ra}d3, and of our proximity to the con-
vective threshold, this selective action is obtained by sligh
reducingd in a definite part of the cell. The small chann
reduction then produces subcritical conditions suppress
convection but yields minor modifications on mean flow
~see Appendix D!. In this configuration, the cell domain thu
splits into a convective domain of unreduced depthd and a
conductive domain of reduced depthd8. The roll flow

FIG. 1. Sketch of open containers.~a! The boundaries of roll
flow and mean flow differ; three different domains may be defin
according to the vanishing of convection, mean flow vorticityV, or
none,~b! @~c!# The conductive domain is forced by inserting a th
sheet that reduces the cell depth with minor consequences fo
mean flow. When the sheet is in close contact with~at some dis-
tance from! the bottom plate, rolls tangential~normal! to boundaries
are stabilized.
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55 355SENSITIVITY OF CONVECTIVE STRUCTURES TO . . .
boundary corresponds to the limit of the convective dom
and the mean flow boundary is located, as usual, at the la
walls of the cell@Fig. 1~a!#.

In practice, the reduction of the cell depth has be
achieved by inserting a thin sheet of cardboard at some d
nite places of a normal cell@Figs. 1~b! and 1~c!#. Its position
with respect to the bottom plate determines the roll bound
condition: in the case of a close contact@Fig. 1~b!#, rolls
tangential to the sheet boundary are expected; on the o
site case@Fig. 1~c!#, the usual situation corresponding to ro
perpendicular to the boundary is recovered.

When contact between sheet and plate is avoided,
sheet is placed at a distanced1 of the bottom plate. Neglect
ing its thickness with respect to the cell depthd, we note
d25d2d1 its distance to the top plate. We chosed15d/4
andd253d/4 in order to provide a large depth available
mean flows. Since the vertical temperature gradient is u
form, the threshold of convection is increased by a fac
(d/d2!

45~4/3!4 in the conductive domain compared to i
value in the convective one. Moreover, denoting by Ra
Rayleigh number and Rac its value at onset of convection
the reduced Rayleigh numbers in the convective dom
«5~Ra2Rac!/Rac and in the conductive one
«85~Ra82Rac8!/Rac8 are related by«8115~d2/d!4 ~«11!. No
rolls can thus appear in the conductive domain until«'2.16.
In addition, for higher values of«, the roll amplitudeA8 in
the conductive domain is weakened compared to its valuA
in the convective domain in a ratioA8/A5(«8/«!1/2, smaller
than 0.3 until«53.

D. Validation

Since our study aims at clarifying intrinsic mechanisms
pattern dynamics, one must first ensure that the trick use
realize open containers does not modify pattern behaviors
a different cause than a change of mean flow boundary c
ditions.

Apart from the expected hydrodynamical influence, t
sheet could modify convection by a thermal mean. Es
cially, owing to the large thermal conductivity of cardboa
compared to the convective fluid, here a gas, the heat cu
flowing within the plexiglass sidewall could be derive
through the sheet well inside the cell and then modify te
perature fields even at the border of the convective dom
To prevent this effect, the cardboard sheet has not bee
tached to the sidewalls so as to cut the heat flow com
from it. In addition, its thicknessd was reduced to a sma
fraction of the cell depth~d5d/8! so as to minimize horizon
tal heat transport. Its lengthl was then sufficiently large
compared to its thickness~l /d'100! for ensuring a good
thermalization with the gas and thus a large reduction of
thermal perturbation brought about by the sidewalls. Al
gether, these conditions have likely produced less ther
perturbations than in the weakly forcing configuration stu
ied by Ahlers and co-workers in which a thicker~d5d/3! and
narrower~l /d'10! spacer tab attached to the sidewall w
used@19#.

In order to experimentally control the influence of therm
perturbations on dynamics, we have studied the route to t
dependence in a circular open container displaying a con
tive zone so narrow that hydrodynamics could only be n
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ligibly perturbed: convective zone radiusR512.5d, cell ra-
dius R851.1R, conductive zone extensionR82R51.25 d.
The only remaining influence could therefore only arise fro
thermics. However, as expected, no modification, eit
qualitative or quantitative, has been noticed with respect
closed circular container of same aspect ratioR.

E. Roll boundary condition

Although the sheet has a passive role with respect to
tern behavior, it actually provides a new roll boundary co
dition that we clarify in the following. When the sheet, wha
ever its size, is placed in close contact with the bottom pla
it enhances the inhomogeneity of thermal conductivity a
thus induces horizontal thermal gradients. Rolls are then
pected to end tangentially to the boundaries, as confirmed
experiment in Sec. III C.

When the sheet is placed in between the fluid layer
imposes an additional rigid boundary condition at a qua
of the cell depth. Since the fundamental mode of convect
involves nodes at the upper and lower plates only, it can
satisfy this condition and therefore vanishes at the sh
boundary, as if it was a rigid wall. The same configuration
that observed in closed containers, i.e., rolls normal
boundaries is then expected. This is actually confirmed
direct observations, as shown below.

III. EXPERIMENT

The purpose of the following series of experiments co
sists in comparing, at low Prandtl number and for moder
aspect ratios, the behavior of convective structures in clo
and open containers. Each of the following structur
straight rolls, foci, focus pairs, and textures, have thus b
studied in both kinds of containers. For the sake of a me
ingful comparison, closed and open containers have b
made within the same experimental setup and, for each st
ture, with the same convective domain geometry.

A. Experimental setup

The setup has already been described in detail elsew
@21,17#. It is designed so as to achieve and observe conv
tion in argon gas at room temperature and at a Prandtl n
ber of 0.71.

The top and bottom horizontal plates are made of sapp
and copper, respectively. The top plate is thermally regula
by water circulation and the bottom plate by an electri
heater. The cell is made of Plexiglass and the sheet is m
of cardboard. Compared to argon gas~l51.8731024

W cm21 K21 at 30 bars and 300 K!, the thermal conductivity
of materials are respectively 23104 ~copper!, 23103 ~sap-
phire!, and 10~Plexiglass and cardboard! times larger.

Pattern visualization is achieved by the shadowgra
method. Owing to the low density of argon gas at roo
temperature, increasing the temperature gradients and th
tical properties of the medium are necessary for enhanc
the contrast of the images. This is obtained by raising
pressure to 30 bars, following a previously described met
@21,17#.

The cell depth is 1.6 mm and the critical temperatu
difference is 3.5 °C. Its uniformity is ensured by three ca
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356 55A. POCHEAU AND F. DAVIAUD
brated spacers within an accuracy of 1022 mm. Measure-
ments of pressure reveal its stability at better than 1%.
temperature difference between the top and bottom plate
measured by a series of thermocouples. It is electronic
regulated to within 1022 °C.

Images of the convective layer are made on a charg
coupled device camera by an afocal doublet of telesco
quality lens. The contrast of the images is adjusted by va
ing the camera position and has been enhanced by im
processing.

Except in the study of straight rolls~Sec. III B!, the ge-
ometries of both the mean flow boundaries and the roll fl
boundaries have been taken to be circular. The former, w
corresponds to the cell boundary, displays an aspect ratioR8
~the ratio of its radius to the cell depthd) of R8525. The roll
flow boundary is determined by the sheet boundary. Exc
in a validation experiment~Sec. II D!, its aspect ratioR has
been fixed toR5R8/2512.5.

According to the thermal diffusivityk of argon~k50.69
cm2 s21 at 30 bars and 300 K!, the vertical and horizonta
thermal diffusion times in the convective domains aretv
5d2/k53.7 s andth5R2d2/k'10 min. Since the presen
experiments aim at studying intrinsic mechanisms of patt
dynamics, only asymptotic states observed beyond trans
decays have been considered. Following theoretical ana
@8# and observations@13#, this has required waiting times o
at leastR2th'25 h, unless limit cycles or stationary stat
were reached. No hysteresis has been noticed on any o
structures studied.

B. Straight rolls

Outside defect cores, straight rolls may be considered
local approximation of textures as far as roll curvature
neglected. From this point of view, they stand as the m
natural candidate for modeling textures@4#. However, at low
Prandtl number, closed containers have revealed a large
ference between the onset of time dependence of stra
rolls ~«'0.5! and that of textures~«'0.1!. This is sufficent
to conclude that straight rolls fail to capture the mechanis
of texture time dependence@20,21,29,30#. Although they are
disqualified for modeling textures, their behavior in op
containers is nonetheless interesting in understanding
sensitivity of patterns to mean flow boundary conditions. W
thus report it below.

The open container is made with a cardboard sheet
volving a rectangular hole so as to fit the geometry
straight rolls. It delimits a convective domain of dimensio
25319 in cell depth units. At the small sides of the rectang
the sheet is put in close contact with the bottom plate so a
stabilize tangential rolls. At the large sides of the rectang
the sheet is put at some height above the bottom plate s
to induce normal rolls. By this way, all the roll bounda
conditions are compatible with straight rolls parallel to t
small side of the rectangle. As expected, they give rise
straight roll structure close to the convective threshold.

The closed container consists of a rectangular Plexig
cell filling the entire conductive domain and is in close co
tact with the top and bottom plates. Rolls normal to
boundaries should then be induced. This tendency is h
ever inhibited by placing, along the smallest sides of
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rectangle, two thin cardboard strips in close contact with
bottom plate. Then straight rolls parallel to the smallest si
of the container are actually induced close to the convec
threshold.

In both open and closed containers, straight rolls show
sameroute to time dependence. It is displayed in Fig. 2
the case of open containers. The wave number is sele
@Figs. 2~a! and 2~c!# but, as observed in a number of close
containers@24,17,29#, its value changes by defect nucleatio
each time the skewed-varicose instability is encounte
@Figs. 2~b! and 2~d!#; asymptotic states are then stationa
until an oscillatory motion of rolls induced by the oscillato
instability @4# occurs at high values of«. The only noticeable
difference regarding the kind of container is thus at m
quantitative, but, as shown in Fig. 2~e!, small enough to con-
clude: the route to time dependence of straight rolls is in
pendent of the mean flow boundary condition.

C. Foci

The open container is made with a cardboard sheet
volving a circular hole so as to fit the geometry of foci.
order to generate a roll tangent to the boundary@Fig. 1~b!#,
the sheet is placed in close contact with the bottom pla
The aspect ratios areR512.5 for the convective domain an
R852R for the conductive one.

The closed container is achieved by taking a circu
Plexiglass cell filling the entire conductive doma
R,r,R8. Then a thin cardboard strip is placed all along
inner boundary in close contact with the bottom plate so a
induce a circular roll there.

Experimental observations show a similar route to tim
dependence in both closed and open containers@18# ~Figs. 3
and 4!: The focus singularity first shifts as« increases, the
pattern being still stationary@Figs. 3~a! and 4~a!#. The am-
plitude of this off-centering is similar in both kinds of con
tainers, a bit larger in closed containers, however~Fig. 5!.

The first dynamical event appears at«50.20 in both
closed and open containers and consists in defect nuclea
by roll pinching atr'3R/4 @Figs. 3~c! and 4~b!#. In both
configurations, two dislocations are generated and climb o
circular roll, one on the left of the off-centering direction, th
other on the right. They thus rotate in opposite directions
eventually glide to the focus where they disappear, as ill
trated in Figs. 3~c!–3~f! for the open container and Figs
4~b!–4~f! for the closed container. At this time, a roll pa
has been lost. However, the focus singularity generate
back and allows the same scenario to resume. One thus
tains a limit cycle, as already observed in containers w
similar aspect ratios@31,18,17#. An important difference be-
tween containers is in order however: whereas foci sh
permanent oscillations in closed containers as soon
«50.20, they are able to restabilize in open containers
between 0.20<«<0.25 @Fig. 3~b!#.

This periodic dynamics contrasts with that reported
smaller @15# or larger aspect ratios@19,32# where no limit
cycles involving defect nucleation have been observed
particular, in the latter case, foci emit phase traveling wa
but fail in reaching a stable state as soon as defects are n
ated: their center then moves towards the sidewalls whe
disappears, leaving a textured structure.
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FIG. 2. Instability of straight rolls in an open container:GxGy525319. ~a! Stationary state:«,1.01, ~b! skewed-varicose instability
«51.01,~c! stationary state: 1.01,«,1.75,~d! skewed-varicose instability:«51.75,~e! stability diagrams in closed and open containers«
is the reduced Rayleigh number andk the wave number of straight rolls; the symbols M, E, SV, and OSC refer to the marginal, the Eck
the skewed-varicose, and the oscillatory stability curves.
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A more accurate observation of the limit cycles reve
that, in both containers, the motion of the two dislocations
not synchronous. Near the onset of the dynamics, the d
cation which climbs clockwise moves quicker than the ot
@Figs. 3~d! and 4~d!#, and, in closed containers, even disa
pears sooner at the focus@Fig. 4~e!#: the period is then abou
20 min, i.e., 2th . As « increases, dislocations are nucleat
closer to the sidewalls~r'R! and are better synchronized
s
s
o-
r
-

the dynamics becomes more and more symmetric and
period decreases to about 3 min, i.e., 0.3th , at «50.36.

At this value of«, the limit cycles show a period doublin
in both kinds of containers: dislocations are still not synch
nous but the quickest dislocation changes at each cycle,
time that climbing clockwise, the other time that climbin
counterclockwise. Labeling the clockwise direction ‘‘1’’
and the counterclockwise direction ‘‘2’’ the dynamics
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FIG. 3. Instability of foci in an open container:R512.5,R8525. ~a! Stable focus«,0.20. An off-centering of the focus singularity i
noticeable,~b! Stationary state: 0.20,«,0.25,~c!–~f! Time-dependent focus: 0.25,«. Notice the small asymmetry of defect climbing in~d!.
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may then be symbolized by the series of directions displa
by the quickest dislocation:~1,2,1,2,...!.

A period-four regime is then observed at«50.42. It is
induced by the nucleation of another dislocation pair bef
the previous pair has disappeared. Although both pairs
simultaneously present for a while, their dislocations ne
collide, the slowest dislocation of the oldest pair reaching
focus center before the quickest dislocation of the young
one. Their coupling, however, modifies the dynamical
quence, the quickest dislocation showing the same direc
during two cycles before switching to the other directio
This generates the following series of quickest dislocatio
~1,1,2,2,1,1,...!. The states referring to the simultaneo
presence of consecutive pairs of dislocations may be ide
fied by quoting the couples of their quickest di
locations. They then correspond to the ser
@~1,1!,~1,2!,~2,2!,~2,1!,~1,1!,...#, and thus to a period
four regime.

We emphasize that the change from the period-two
gime to the period-four regime does not correspond t
modulation of the former regime~1,2,1,2,...! but to a
modification of its switching period from one dynamic
state~1! to its symmetric~2!: ~1,1,2,2,1,1,...!. This bi-
furcation should therefore not be confused with a usual
riod doubling. As for the similar bifurcations of focus pa
dynamics, its origin may trace back to symmetry breaking
the mean flow configuration@13#.
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Regarding the transition to time dependence, the only
ference with respect to the kind of container is thus a re
bilization of foci in open containers until«50.25. Since this
delay is quite short, their route to time dependence may
considered as nearly independent of the mean flow boun
condition.

D. Focus pairs

The open and closed containers are the same as those
for foci except that the sheet is placed at a quarter of the
height in order to allow rolls normal to boundaries@Fig.
1~c!#. The aspect ratio of the cell and of the convective d
main are stillR852R andR512.5. The main geometry o
focus pairs is shown in Fig. 6~b! in the case of open contain
ers.

Experiments reveal qualitative similarities but large qua
titative differences between the routes to time dependenc
focus pairs according to the kind of container.

1. Closed container

The observed route to time-dependence is the same as
reported in the literature@21,17,19#. Focus pairs display
wave-number gradients and, especially, a roll compress
on the line joining foci. The largest compression is reach
at the pattern center, on the central roll separating foci. Q
near the onset of convection, at«50.08, this roll becomes
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FIG. 4. Instability of foci in a closed container:R512.5,R85R. ~a! Stable focus«,0.20. An off-centering of the focus singularity i
noticeable,~b! Defect nucleation:«50.20, ~c!–~e! Defect evolution by climbing and gliding,~f! Elimination of defects at the focus
singularity. Notice the large asymmetry of defect climbing in~d!.
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FIG. 5. Measurement of the reduced off-centeringD/R of stable
foci before time dependence.D represents the distance between t
center of the smallest roll and the geometrical center,R the radius
of the pattern, and« the reduced Rayleigh number. The evolution
continuous from the onset of convection, in contradiction with
concept of spontaneous instability beyond some distance from
onset of convection. Black circles refer to closed containersR
512.5) and open squares to open containers (R512.5,R852R).
unstable and shrinks, yielding the nucleation of a dislocat
pair. These defects climb and glide to the sidewalls wh
they disappear, leading back to a defectless focus pair.
this structure involves less rolls than the original focus pa
all of them are less compressed and actually stable. This d
not imply steadiness, however. Instead, this focus pair
plays a slow evolution at large scale increasing its comp
sion until a new dislocation nucleation occurs. A new cyc
then repeats generating a spatiotemporal periodic dynam

Farther from onset, till«50.45, a detailed study of the
dynamics@13#, not undergone here, reveals bifurcations
the limit cycle explained by successive symmetry breakin
of the mean flow field. A stationary state is then displayed
between 0.45,«,0.66 before an aperiodic persistent d
namics occurs for 0.66,«.

Quantitative evolutions of pattern distortion on the rou
to time dependence are provided by local wave-number m
surements. Figure 7 displays those performed at the most
least compressed points of steady focus pairs: the pa
center and the end of the central roll, respectively. The w
number at the pattern center grows until the vicinity of t
stability boundary of infinite straight rolls is reached. Then
local instability is triggered there together with the bifurc
tion to time dependence.

he
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FIG. 6. Stationary patterns in open containers: focus pairs in~a!–~c! and texture in~d!. R512.5,R8525. ~a! «50.03. A dislocation has
been nucleated by a localized Eckhaus instability near the boundary of the upper-right quarter,~b! «50.40. Focus pair: rolls are stil
perpendicular to the boundaries,~c! 0.56,«,0.60. Focus pair: one roll pair has been lost by localized instability and defect elimination~d!
0.74,«,1.2. Stationary texture.
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2. Open container

We describe the route to time dependence in open c
tainers for increasing«: Close to onset,«,0.1, the roll cur-
vature is too weak for providing rolls normal to boundarie
At «'0.1, a dislocation spontaneously occurs by roll pinc
ing at the boundary of the central roll@Fig. 6~a!#. It remains
at this place until it reaches some slightly higher value o«
and then disappears by gliding to a focus. A steady fo
pair is then displayed up to a surprisingly large value of«:
«50.56 @Fig. 6~b!#.

At «50.56, it undergoes a defect nucleation at the patt
center in a way similar to that displayed in a closed contai
~Fig. 8!. Especially, after elimination of defects at focus ce
ters, the new focus pair hereto involves stable rolls. Ho
ever, in contrast to the behavior observed in closed cont
ers, it displays no evolution at a large scale. It has t
reached a small-scale equilibrium~any roll is stable!, as well
as a large-scale equilibrium~the roll patches are steady! @Fig.
n-

.
-

s

n
r
-
-
n-
s

6~c!# and is thus stationary. It contains one roll pair less th
the previous focus pair, however.

This second focus pair remains stationary until«50.74. It
then undergoes defect nucleation and restabilizes in a
tionary pattern again. However, in contrast with the previo
case, its geometry is more complex than a focus pair
displays, as shown in Fig. 6~d!, several foci joined by grain
boundaries. It remains stationary until«51.2.

Above «51.2, no stationary states have been observ
despite very large waiting times of orderR2tH ~Figs. 9 and
10!. The corresponding time-dependent states will be
scribed in Sec. III E.

Local wave numbers of steady focus pairs have been m
sured at three locations: the pattern centerkpc, the foci kf ,
and the boundary of the central rollkb . The corresponding
values are displayed till«50.74 on Fig. 7.

The wave numberkb is quite close to the Eckhaus insta
bility. This is consistent with the nucleation of a dislocatio
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55 361SENSITIVITY OF CONVECTIVE STRUCTURES TO . . .
at the boundary of the central roll for«'0.1 @Fig. 6~a!#. On
the other hand, the wave numberskpc and kf show similar
values. Since their difference results from the phase ad
tion by the mean flow on the axis joining the pattern cen
to a focus, this indicates that mean flows display an am
tude weaker than in a closed container and/or that t
change direction on this axis.

At the transition between focus pairs~«50.56!, the wave
number at the pattern center lies slightly inside the instab
domain of infinite straight rolls with respect to the skewe
varicose instability~Fig. 7!. Any other local wave number is
stable however. This agrees with the observation of a sin
local instability at the pattern center displaying a roll mod
lation analogous to a skewed-varicose distortion~Fig. 8!.
The slight difference between the marginal stabilities
straight rolls and focus pairs is not surprising owing to t
finite size of the container and the spatial inhomogeneity
the structure.

Finally, as may be noticed in Fig. 7, the new focus p
displays a reduced wave-number band that fits entirely
the stable domain of straight rolls. In agreement with o

FIG. 7. Stability diagram of infinite straight rolls at Pr50.7,
displaying the marginal~M!, the Eckhaus~E!, and the skewed-
varicose~SV! stability curves.« and k denote reduced Rayleig
numbers and wave numbers. We have plotted the local wave n
bers measured on focus pairs in closed and open containers. B
squares correspond to the band of wave numbers in a closed
tainer. Open squares, crosses, and triangles correspond to the
numbers in an open container, at the pattern centerkpc, the focus
kf , and the boundary of the central rollkb , respectively. The bold
line shows the maximal wave numberkm displayed by the solution
of the Cross-Newell equations in open containers, the viscous s
of the annular sheet being taken into account. It is computed f
the relations~20! and~21!, and~D1!–~D3! of Appendix D forp50,
a5

2
3, Pr50.7,r52, andd5

1
4. As it should be reached at the patte

center, it should correspond tokpc.
c-
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observations, its local stability is then restored.

3. Comparison between closed and open containers

In both kinds of containers, the route to time depende
of focus pairs shows similar qualitative features, especia
roll compression and roll pinching. This suggests that
mechanism for time dependence is presumably the sam
both cases. However, quantitative comparison of wave n
bers points out that, although the wave-number band quic
explodes in closed containers, it remains nearly constan
open ones~Fig. 7!. The main destabilizing factor of focu
pairs, roll compression, has thus been largely weakened
opening the container. This results in a large delay of
onset of persistent time dependence«0 as big as an order o
magnitude:«050.74 in open containers instead of 0.08
closed containers.

E. Textures

The closed and open containers are designed so as t
low rolls normal to boundaries. They are thus the same
those used for focus pairs. In either closed or open cont
ers, textures@Figs. 6~d!, 9, and 10# show the following im-
portant properties: except for a few marginal cases@13#, the
dynamics beyond transient decay is independent of the k
of texture chosen as initial condition, of the way the onset
convection is crossed~slowly or suddenly!, and more gener-
ally, on the history. This legitimizes the concept of a co
mon route to time dependence for textures. Moreover,
each kind of container, textures and focus pairs show
same route to time dependence: the same asymptotic st
the same onsets of time dependence, and the same e
triggering dynamics by local instabilities and defect nuc
ation. Especially, we emphasize that textures show the s
spectacular inhibition of time dependence in open contain
than focus pairs, whatever their initial condition.

We now focus attention to texture behaviors in open c
tainers. As in closed containers@13#, their relaxation time to
asymptotic states is quite long, usually of the order of seve
Rth , except at bifurcation points where it varies in a lar
range: it is of the order of a fewth only at the transition
between focus pairs~«50.56! but lasts as long asRth at the
transition to complex stationary structures~«50.74!. This
suggests that stationary attractors are weakly attracting
phase space and are few in number, so that a long wande
is necessary to reach them.

Above«51.2, a persistent time dependence of texture
displayed in open containers~Figs. 9 and 10!. Two different
types of dynamics may be distinguished, depending on
scale of the destabilized spatial modes. From«51.2 to
«51.5, patterns are still in equilibrium at a large scale, b
not at a small scale. They then show localized dynam
events involving periodic cross-roll-like instabilities o
grain-boundary motions, but no evolution of the large-sc
geometry~Fig. 9!. Above «51.5, pattern equilibrium is de
stroyed both at large and a small scale: large-scale er
evolutions occur, together with defect nucleations, sm
scale instabilities, and rotating spirals reminiscent of tho
recently observed in larger aspect ratios@33,34# ~Fig. 10!.

We finally notice that, in any dynamical regime, transie
or turbulent, a phenomenon specific to open container
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FIG. 8. Transition between stationary focus pairs in open containers:«50.56,R512.5,R8525. ~a! Localized skewed-varicose instabilit
at the pattern center,~b!, ~c! Defect nucleation,~d!–~f! Defect elimination at the foci.
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displayed: focus singularities not only generate new rolls
in closed containers, but also sometimes absorb rolls.

F. Conclusion

Convective structures display two opposite sensitivities
a change of mean flow boundary conditions:~i! quasi-
invariance of spatiotemporal features including the onse
time-dependence,~ii ! large modification of spatiotempora
features including a weakening of roll compression an
spectacular delay of the onset of time-dependence.

These experimental evidences reveal two kinds of dyn
ics corresponding to two classes of structures.

(i) Boundary independent dynamics. This class includes
straight rolls and foci. It is not related to the degree of s
bility of structures since straight rolls involve the most sta
structures whereas foci show time dependence much cl
to onset of convection at low Prandtl number. However,
notice that each of these model structures displaycontinuous
symmetriesof the wave-vector field: translational symmet
for straight rolls and rotational symmetry for foci.

(ii) Boundary sensitive dynamics. This class includes fo-
cus pairs and textures. We notice that all of them display
same degree of stability: low or high in closed or open c
tainers, respectively, and at low Prandtl number. We a
emphasize that none of these structures displays contin
symmetries of the wave-vector field. Only the most regu
s
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structures, the focus pairs, involve a discrete symmetry s
all substructures delimited by the central roll and the li
joining foci are superposable. Focusing attention here
continuous symmetries only, we shall thus consider them
asymmetric.

IV. ANALYSIS

This section aims at clarifying, by analytical study
model structures, the origin of the two kinds of sensitivity
boundary condition evidenced experimentally. It is based
the assumption according to which the experimental diff
ence between closed and open containers is purely hydr
namical and only traces back to a separation of the m
flow boundary from the roll flow boundary. This is actual
supported by the experimental evidence of unchanged be
ior when these boundaries are distinct, but close to one
other ~see Sec. II D!.

A suitable framework for studying the consequences o
change of mean flow boundary conditions is the Cro
Newell equations. It will be applied for the two types o
structures relevant to each kind of sensitivity: those invo
ing continuous symmetry of the wave-vector field~hereafter
called symmetric structures! and those involving none~here-
after called asymmetric structures!. The sensitivity of each of
them will be derived. This will yield the link between geom
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55 363SENSITIVITY OF CONVECTIVE STRUCTURES TO . . .
etry and dynamics in this extended convective system.
In the following, the indexesi , o, and I will refer to the

inner convective zone, the outer conductive zone, and
interface in-between@Fig. 1~a!#.

A. The model

1. The Cross-Newell equations

The exact form of the large-scale equations of convec
governing the coupled dynamics of the phase fieldw and the
mean flow fieldF has been obtained by Newell, Passot, a
Souli from the Boussinesq equations@10#. It closely re-
sembles the Cross-Newell~CN! equations@8# previously de-
rived from approximate models of convection, with neg
gible corrections close to onset of convection~«&0.5!. Since
the exact equations are more complex to use than the
equations but validate their main features, we prefer to w
with the latter in the following:

tF]w

]t
1k•FG1“•~kB!501oS 1RD , ~1!

F52gk“•~kA2!1“~P!1oS 1RD . ~2!

FIG. 9. Patterns showing local dynamics~only a part of the
pattern is unsteady! and large-scale equilibrium~pattern geometry is
steady at large-scale! in an open container: 1.2,«,1.5, R512.5,
R8525. ~a! Localized cross-roll instability at the bottom left of th
picture,~b! Grain-boundary motion.
e

n

d

N
k

Herek5“w is the phase gradient,A the roll amplitude,P a
pressure field, andB(k,Ra,Pr!, t~k,Ra,Pr!, andg~Pr! suitable
scalar functions,g being nearly proportional to Pr21.

The physics of these equations is recalled in Appendix
Their validity is restricted to first order in the inverse aspe
ratio 1/R. Moreover, the mean flow equation~2! neglects the
mean flow dynamics and is only valid close to the convect
threshold~«!1!.

2. Hydrodynamic interface

At a large scale, the interface between the inner and o
zones appears as a discontinuity of the large-scale vort
@Fig. 1~a!#. Of course, this is not realistic since vorticity is
divergence-free field that cannot vanish abruptly. In fa
some vorticity sources are also generated there, eithe
mean Reynolds stresses or by mean flow shear.

The small extension of this interface does not allow us
neglect its vorticity contribution, since the short-scale var
tions induced in it may yield a large vorticity magnitud
Especially, it is shown in Appendix C that it actually dom
nates the net mean vorticity generated in the convective
main.

The different kinds of vorticity sources might be difficu
to compute separately. Fortunately, their net contribut
will be determined directly by using the continuity of th
pressure field across the interface~see Appendix B!.

3. Boundary conditions

We denote byn the boundary normals. Foci involve a ro
tangential to boundary:

k3n50 at r5R.

Focus pairs involve rolls normal to boundary:

k•n50 at r5R.

Mean flows vanish at the impermeable boundary:

F•n50 at r5R8.

FIG. 10. Phase turbulence in an open container: 1.5,«,
R512.5, andR8525. Notice the rotating spiral reminiscent of thos
observed in spiral defect chaos@33,34#.
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364 55A. POCHEAU AND F. DAVIAUD
B. Symmetric structures

1. Definition and approach

We call symmetric structures, the structures for which
wave-vector field satisfies acontinuoussymmetry, either
translational or rotational. This selects parallel or radial wa
vectors and thus straight rolls@Fig. 2~a!# or foci @Figs. 3~a!
and 4~a!#.

The stability analysis of these structures turns out to so
the linearized CN equations, together with their bound
conditions, for normal modes of perturbations. Linear sta
ity is then deduced from the resulting dispersion relation.
straight rolls, this procedure is readily achieved with Four
modes since the partial differential equations are homo
neous@27,8#. It is however much more complex to imple
ment in foci since the corresponding equations invo
space-dependent terms. Evidence of instability is then
tained from integral considerations and numerical calcu
tions @9,10#.

In the following, our goal consists in comparing the line
stability analysis of symmetric structures in closed and o
containers without deriving explicitly either of them. W
shall first notice that their basic state of instability does
depend on the kind of container. This will lead us to foc
attention to the modification brought about on mean flows
the sole change of boundary conditions. Analyzing its c
sequence on the instability spectra will show the indep
dence of the onsets of instability with respect to mean fl
boundary conditions.

2. Mean flow sources

Since mean flow sources correspond to mean Reyn
stresses, they derive from roll modulation and thus sat
the same symmetries as the roll structure. Within the conv
tive domain, they then generate, according to Eq.~2!, mean
flows normal to roll axis in a straight roll structure and rad
mean flows in foci, up to a pressure gradient. In addition,
former flows are invariant by translation along the roll ax
and the latter are invariant by rotation around the focus c
ter. Owing to these symmetries, no mean flow vorticity c
be generated in both cases in the convective domain.

Within the interface, the roll direction is either normal
parallel to the roll boundary, in either straight rolls and fo
and in either kinds of containers~Figs. 2–4!. The roll struc-
ture therefore satisfies a translational symmetry along
interface and a reflection symmetry with respect to the in
face normal. Since its mean Reynolds stresses must sa
the same symmetries, they can only be a vector field par
to the boundary normal and independent of the orthogo
direction. No field of this kind can generate vertical vorticit
We emphasize that this statement is valid in stable or
stable regimes, since the boundary rolls stay the same
way.

The mean flows generated by symmetric structures an
boundary rolls can thus only be potential, incompressib
and free of singularity. However, no flow of this kind ca
exist in a closed cell. Neither symmetric structures in sta
states nor their interface in unstable states can therefore
erate mean flow, in any kind of container.
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3. Basic state of instability

Since, whatever the kind of container, symmetric stru
tures involve no mean flow, their phase field is the same
either case. The difference between their stability analy
therefore traces back to a change not of the basic stat
instability but of the mean flows. We shall denotedF, this
mean flow variation induced by the sole change of me
flow boundary conditions. We address its main features
low.

4. Mean flow perturbation

As mean flows vanish in symmetric structures, whate
the kind of container, the mean flow modificationdF brought
about by the change of boundary conditions only resu
from that induced on mean flow perturbations. It is thus
least of the same order as the phase perturbationc and dis-
plays, at first order inc, the same growth rate asc.

On the other hand, according to~2!, the mean flow vor-
ticity generated in the convective domain only follows fro
roll modulation, independently of the kind of container. Th
means that the change of mean flow boundary condi
brings no additional vorticity in the inner zone by itself an
thus that the corresponding mean flow modificationdFi can
only be a potential flow satisfying mass conservation. B
its potential and its stream function therefore satisfy a lapl
equation:dFi5“(dp)5“3(jez) with D(dp)5D(j)50.

5. Dispersion relation

At first order in phase perturbation, the only differen
brought about by the change of containers comes from
mean flow variation dFi through the advection term
ku•dFi , ku denoting the wave vector of the unperturb
structure. We determine below its consequence on the in
bility spectrum.

As the additional mean flowdFi and the phase perturba
tion c have the same growth rate, eliminating one of the
from the linear stability analysis does not modify the ins
bility spectrum but provides the opportunity of focusing t
analysis on essential modes. Elimination ofdFi may be
achieved as follows: Taking the curl to the mean flow eq
tion ~2! yields an equation linking the mean flow vorticityV
to the phase perturbationc. It is decoupled fromdFi since
dFi drives no vorticity.

On the other hand, applying a suitable differential ope
tor P~•! to the phase equation~1! yields a dynamical equa
tion for the phase perturbationc that only involves the mean
flow differencedFi via P~ku•dFi!. When the basic structure
consists of straight rolls,ku is a constant vectorksex . Taking
P(•)5D~•! then yieldsP~ku•dFi!5ks]D~dp!/]x50. On the
other hand, when the basic structure is a focus,ku is
a radial vector kfer . Taking P(•)5D(rk f

21
•) yields

P~ku•dFi!5]D~j!/]u50. In both cases,dFi disappears from
the equation and, finally, from the stability analysis.

According to the above statements, the mean flow diff
encedF between containers cannot modify the dispers
relation and thus the onset of linear instability; it on
changes the shape of the unstable modes by driving an a
tional phase distortiondc displaying the same growth rat
than the other dynamical modes and yielding no mean fl
vorticity. Symmetric structures therefore keep the same on
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of instability in either closed or open containers.

C. Asymmetric structures

1. Definition and approach

We call asymmetric structures the structures whose wa
vector field satisfies no continuous symmetry, either tran
tional or rotational@Figs. 6~d!, 9, and 10#. They thus corre-
spond to any structures different from straight rolls or fo
and therefore involve some distortion.

Since asymmetric structures differ from straight rol
they display wave-vector rotations. However, we emphas
that they also involve wave-number gradients:“~k•k!Þ0.
Otherwise, sincek is a gradient field,~k•“!k5“~k•k!/21k
3“3k would vanish, except at the singular points wherek
is not defined. The field lines ofk would then be similar to
the stream lines of a steady flow with no total derivative a
would thus correspond to straight lines between singu
points. Since an intersection of two field lines ofk is a phase
singularity, the only possibilities for keeping their dens
finite would then be either no intersection or a single one
the whole domain. The former case corresponds to a cons
wave-vector field,k5ksex , and thus to straight rolls. Th
latter case corresponds to a radial wave-vector field,k5kfer ,
and thus to foci. Both involve continuous symmetries,
contrast with asymmetric structures.

Owing to these wave-vector gradients, asymmetric str
tures trigger some mean flow sources which, because o
absence of continuous symmetry, generate some mean
vorticity. They thus cannot be compensated by a press
gradient, so that the resulting mean flows are necessarily
zero:FÞ0. This important feature contrasts with the vanis
ing of mean flow in symmetric structures and makes all
difference between the two kinds of patterns. Especially,
change of container is now suitable for modifying the me
flows of asymmetric structures and consequently their ph
even in their stable regime. Not only the mean flow pert
bations but also the basic state of instability may then n
depend on the kind of container. Compared to symme
structures, this provides an additional opportunity of be
sensitive to a change of mean flow boundary conditions.

Another important difference brought about by asymm
try is the following. As a result of phase advectionF•kÞ0,
mean flows, whatever their magnitude, stretch the roll wa
length and thus induce a small but continuous wave-num
drift along mean flow streamlines@28,12#. Its consequence
are enhanced in large aspect ratio cells since, being i
grated over long distances, this drift may result in consid
able wave-number shifts. This important effect actually c
responds to the accumulation of a nonlinear phase shift f
rolls to rolls and thus to a secular behavior in space,
spatial cycles being provided by rolls and the secularity
the wave number increase. Following it, unstable wave nu
bers may therefore be reachedlocally so that local instabili-
ties may be triggered prior to any instability of large-sca
fields. This, again, contrasts with symmetric structures wh
an evolution of geometry could only be generated by lar
scale instabilities.

A priori, the stability analysis of asymmetric patter
might proceed as in symmetric structures, by seeking
dispersion relation of phase perturbations around some b
e-
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state. However, owing to the wave-number gradients,
linearized equations would involve space-dependent co
cients that could likely result in a localization of the grow
rates of the perturbations:“~s!Þ0. Especially, in a WKB
approximation, a local crossing of the stability boundary
rolls by extremal wave numbers would induce a local po
tive growth rate and thus a localized instability. Motivate
by this statement and by experimental observations,
chose to perform the stability analysis in two steps: fir
determination of the basic state of instability and seco
investigation of its local stability.

This procedure is implemented below on a model
asymmetric structure: the focus pair. It is similar to that
ready used in closed containers@11–13# but is supplemented
here by an analysis of the conductive zone, of the interfa
and of their effects on the convective zone. Owing to t
analytical complexity of the CN equations as far as no c
tinuous symmetry is involved, the basic state of instability
solved by a perturbative method. A relevant polynomial e
pansion of the phase field is introduced and the resul
mean flows are determined at the same order of expans
Both fields are then substituted into the phase equation, f
which an algebraic system governing the expansion coe
cients is obtained. Its solution, compatible with the bound
conditions, provides the identification of the basic state
instability. Its stability at any location is finally investigate
by comparison of its local wave numbers with the stabil
domain of infinite straight rolls, hereafter called the Bus
balloon @4#.

2. Phase field

The central roll line and the line joining foci are denote
x and y axis, respectively~Fig. 11!. Following the symme-
tries of focus pairs with respect to them, the phase field
expanded as

w~x,y!5k0~11D!yF12a
x2

R2 1b
y2

R2 1c
y4

R4 1d
x2y2

R4 G ,
~3!

FIG. 11. Sketch of the phase field and the coordinate frame
both closed or open containers.
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366 55A. POCHEAU AND F. DAVIAUD
where k0 , the wave number selected by foci, satisfi
B(k0 ,«,Pr)50 @8#.

Here, a, b, c, d, andD are expansion parameters. Th
parametera drives phase curvature and the remaining o
b, c, d, andD, phase compression. In agreement with p
turbative analysis, they are all considered much smaller t
unity. Moreover, following experimental observations sho
ing a weak compression compared to curvature@Fig. 6~b!#,
we anticipate thatb, c, d, andD are second order ina, as
confirmed at the course of the derivation.

3. Mean flow field

(a) Mean flow vorticity. Expansion of Eq.~2! yields, ac-
cording to Eq.~3!,

Vzi5v
r 2

R4sin~2u!1oS a2R2D , ~4!

where v52gkoA
2(ko)d, d5a2(125p)23d(11p), and

p5] ln(A2)/] lnk(ko). By symmetry of the underlying pat
tern, the polar harmonics of the mean vertical vorticity in t
interfaceVzI are even but only the quadrupolar mode is re
nant with the other modes of the problem. Disregarding
other harmonics, we thus write

VzI5
d~R!

R
v Isin~2u!1OS d~R!

R2 D , ~5!

whered(R) is the delta function and wherev I will be de-
termined later. Finally, the mean vertical vorticityVzo van-
ishes in the outer zone:

Vzo50. ~6!

(b) Stream functions; potentials. Owing to the symmetries
of the pattern, the stream functionj of F is sought as a
second polar harmonics:j~r ,u!5j~r !sin~2u!. It is obtained by
integration of the Poisson equationDj52Vz where, accord-
ing to Eqs.~4!–~6!, Vz5Vz(r )sin~2u!:

j~r !52r 2E
0

r 1

s5E0
s

t3Vz~ t !dt ds2
v

12Fb r 2

R2 1g
R2

r 2 G . ~7!

We note thatb andg, to be determined later, drive a pote
tial flow. Owing to ~4!–~6!, j may be written in both the
inner and outer zones:

r,R: j i52
v

12F r 4R4 1b
r 2

R2 1g
R2

r 2 Gsin~2u!, ~8!

r.R: jo52
v

12F ~b2m11!
r 2

R2 1~g1m!
R2

r 2 Gsin~2u!

~9!

with

m52F1213
v I

v G . ~10!

We shall find it convenient to split the corresponding me
flow fieldsFi5“3~jiz! andFo5“3(joz) into a rotational
and a potential part, indexed byr and p, respectively:Fi
s
-
n
-

-
e

n

5Fip1Fir , Fo5Fop1For . We make the choiceFor50
andFir5“3(j irz) wherejir is the value ofji for b5g50.
The corresponding potential partsFip and Fop then drive
from the following pressure fields:

r,R: P i52
v

12Fb r 2

R22g
R2

r 2 Gcos~2u!, ~11!

r.R: Po52
v

12F ~b2m11!
r 2

R22~g1m!
R2

r 2 Gcos~2u!

~12!

with Fip5¹P i andFop5¹Po .
(c) Mean flow field. Mean flows satisfy three boundar

conditions.
~i! Impenetrability at the cell wall:F•n50 at r5R8. This

implies jo(R8)50 and thus b5211m~12r24! where
r5R8/R.

FIG. 12. Closed container:r51, b521. Sketch of~a! the mean
flow field on a square lattice~b! mean flow stream lines forl50,
20.05,20.1,20.15, and20.20. Notice the back flow joining foc
and pattern center. This focalization of the mean flow is respons
for a dangerous roll compression at the pattern center.
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~ii ! No singularity at the pattern center. This givesg50.
~iii ! Continuity of the pressure fieldsPi and Po at the

interface, as derived in Appendix B. This yieldsm5 1
2 from

Eqs.~11! and~12! and, from Eq.~10!, vI52v/3. Altogether,
these constraints yield

b52~11r24!/2, g50, m5 1
2 . ~13!

We note that the value ofb changes from21 to 21
2 from

closed~r51! to largely opened containers~r@1!.
One finally obtains the following expression for the me

flow field F:

FIG. 13. Open container:r52, b'2
1
2. Sketch of~a! the mean

flow field on a square lattice~b! mean flow stream linesl50.4, 0.3,
0.2, 0.1, 0,20.02,20.04, and20.06 for r,R andl5n/32 with
n50, 0.5, 2, 4, 6, 8, 10, and 12 forr.R. Notice the mean flow
shear at the hydrodynamic interface and the low amplitude of
back flow on the line joining foci and pattern center, compared
that displayed in closed containers. Roll compression at the pa
center is weaker and time dependence is inhibited inside the B
balloon.
r,R: Fi52
v

6

1

R4 F r ~r 21bR2!S cos~2u!

2sin~2u! D
1r 3S 0

2sin~2u! D G1oS a2R D , ~14!

r.R: Fo52
v

12

R2

r 3 S cos~2u!F12
r 4

R84G
sin~2u!F11

r 4

R84G D 1oS a2R D .
~15!

Its streamlines, parametrized byl, satisfy

r,R:
r 2

R2 S r 2R22
R4

2R84
2
1

2D sin~2u!5l, ~16!

r.R:
R2

2

R842r 4

r 2R84
sin~2u!5l. ~17!

The mean flow fields and the mean flow stream lines
sketched in Fig. 12 for closed containers~r51, b521! and
in Fig. 13 for open containers~r52, b'2 1

2). A focalization
of mean flows on the line joining the foci is noticeable
closed containers but is largely weakened in open ones.
difference only traces back to the potential flow driven byb.
We determine below its consequences on the phase fiel

4. Basic state of instability

(a) The phase boundary conditions. Within the expansion
~3!, the conditionk•n50 at the roll boundary can be written
sinu @123acos2~u!#1O(a2!50. It is always fulfilled at the
central roll ~u50!, never at focus centers~u56p/2! and
never simultaneously on the whole boundary. Addition
modes not taken into account in the present expansion o
phase field would thus be required to achieve it exac
However, we emphasize that the status of this boundary c
dition is more phenomenological than analytical and, in p
ticular, has not been addressed for the large curvatures
countered near the focus centers. We thus use it as a u
mean for estimating the curvature parametera by imposing
almost perpendicular rolls foru aboutp/4. We then obtain
a5 2

31o(a). A value of order unity ofa, although required
to model satisfactorily the phase field, might appear inco
patible with a perturbative expansion. Our guess is that
physical mechanism of pattern destabilization derived
weak curvature is sufficiently generic to operate at la
ones. Then, applying our procedure fora5 2

3 should be con-
sidered as a quantitative extrapolation of a qualitatively c
rect mechanism. This will be supported by the agreem
between the corresponding solution and the experimental
servations. Another phase boundary condition is in orde
the locations of largest curvaturex: the focus centers. When
foci are in equilibrium, the phase advection by mean flow,
order O(a2/R), balances the phase diffusion, of orderx
@k(0,6R)2ko#. Sincex is of O(1) near a focus center, thi
gives k(0,6R)2ko5O(a2/R) where a5O(1) and R
5O(10) in extended cells. We then obtaink(0,6R)2ko
5o(a2) that expresses the wave-number selection by fo
Within the expansion~3!, this yieldsD523b25c.
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368 55A. POCHEAU AND F. DAVIAUD
(b) The basic state of instability. Introducing the mean
flow field F found in Eqs.~14! and~15! into the phase equa
tion ~1! yields

]w

]t
5koD iF S 6b22aD2b

ad

3 D yR2 1S 20c2
ad

3 D y3R4

1~10a216d2ad!
yx2

R4 G ~18!

with

a52FgkA2t]B/]k G~ko ,«,Pr!, D i52F1t ]~kB!

]k G~ko ,«,Pr!.
~19!

As (]B/]k)(ko ,«,Pr) is negative andB(ko ,«,Pr)50, both
variablesa andD i are positive.

We notice that each mode of the phase equation~18! is
actually involved in the phase-field expansion~3!. This en-
sures the closure of the expansion of the CN equations
enables us to rewrite them as an algebraic dynamical sys
by a mode to mode identification. Solving it in steady sta
gives the following determination of the basic states of
stability at second order ina:

@b,c,d1 5
3a

2,D,ad#5Dc@
2
3b, 15 ,22~112b!,12#, ~20!

Dc5a2
a

21a~11p!
. ~21!

As assumed at the earliest stage, the compression pa
etersb, c, d, andD are second order ina. On the other hand
d and thereforev appear to be always positive. The consta
sign of v implies, from Eq.~14!, that the direction ofF is
solely governed byb in steady focus pairs. As expecte
relation ~20! then shows that the basic state of instability
focus pairs is parametrizedb. We emphasize that this mean
that it actually depends on the kind of container.

5. Local stability analysis

We consider the local wave numbers displayed by ste
focus pairs and investigate whether they belong to the Bu
balloon. The minimal wave numbers of the phase field~3!
are reached at the boundaries of the central roll: (x,y)
5(6R,0). They amount tok(6R,0)5ko~12a!1o(a2! and
may yield roll nucleation by a localized Eckhaus instabili
actually observed experimentally@Fig. 6~a!#.

The maximal wave numberkm takes place on they axis.
Here,k reduces to the following expression:

k~0,y!5koF11DcH S y2R2 1b D 22~b11!2J G . ~22!

According to it, both the location and the value ofkm depend
on b.

~i! For b52 1
2, km is reached at both focus centers (x,y)

5(0,0) and the pattern center (x,y)5(0,0). ThenD50 and
km5ko .

~ii ! For b,2 1
2, km is reached only at the pattern cent

(x,y)5(0,0). ThenD.0 andkm5ko~11D!.
nd
m,
s
-

m-

t

f

y
se

,
The first case is not dangerous since, at least for Pr.0.5,

ko lies well inside the Busse balloon up to large values o«
@35#. On the opposite side, the second case may well yie
local instability at the pattern center for sufficiently larg
values ofD. SinceD is proportional to~112b!, this means
that the local stability of focus pairs depends on the kind
container, as analyzed below.

In closed containers, r51, b521, D5Dc , and
km5ko~11Dc!. At low Prandtl number Pr'1, Fig. 14~a!
shows thatDc grows sufficiently fast with« to makekm cross
the stability boundaries as soon as«'0.1. Focus pairs are
then locally unstable well inside the Busse balloon.

As r grows fromr51 ~closed containers! to r5` ~open
containers!, b increases from21 to 2 1

2 and D decreases

FIG. 14. Sketch of the diagram of stability of straight rolls, th
Busse balloon, as a function of the Rayleigh number at a
Prandtl number~Pr'1! ~dashed domain!. The wave number se
lected by foci,k0~«!, crosses the balloon at the ‘‘top,’’ at values o
« of the same order of magnitude as«B , the« limit of stable straight
rolls. The local wave numbers of focus pairs are computed forp50,
a5

2
3, and Pr50.7. ~a! Closed containers:b521. Focus pairs dis-

play a wave-number band that crosses the Busse balloon a
‘‘side.’’ This induces a local instability at values of«, «o , much
smaller than«B : «o/«B5O~1021!. ~b! Open containers:r4@1,
b52

1
2. Crossing of the Busse balloon occurs near the ‘‘top,’’

values of «, «o , of the order of its highest allowable valu
«B/«B5O~1!. Time dependence is thus inhibited inside the Bus
balloon.
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55 369SENSITIVITY OF CONVECTIVE STRUCTURES TO . . .
from Dc to 0, whatever the Prandtl number. Meanwhile t
maximal wave number is still reached at the pattern ce
but the roll compression decreases:km5ko~11D!. This
makes the threshold of local instability rise, as shown in F
14~b!. In particular, in the limit of widely opened container
r4@1,D vanishes so thatkm5ko , at any Prandtl number. No
pinching can then occur untilko crosses the Busse balloo
At least for Pr.0.5 @35#, this prevents time dependence up
values of« of the order of its highest allowable value«B
@«o'1, «B'2.5 in Fig. 14~b!#. Focus pairs are thus locall
stable in the same« range as the Busse balloon.

In open containers, time dependence of focus pairs is
inhibited inside the Busse balloon at least for any Pran
number larger than 0.5. This effect is hardly noticeable
high Prandtl number since, owing to the vanishing of me
flow sources, closed and open containers become physi
equivalent, in particular regarding focus pair stabilit
Pr→`, g→0, a→0, D→0, and km→ko , in either kind of
containers. It is however spectacular at low Prandtl num
Pr'1, since focus pairs are much more unstable in clo
containers than in open ones. In the latter, their time dep
dence is then surprisingly suppressed within the Busse
loon, not by removing mean flows as in the large Pran
number limit, but by weakening their focalization on the p
tern center.

V. DISCUSSION

We confront the experimental observations to the res
of our analysis, following the above splitting between sy
metric and asymmetric structures. We then focus attention
the role of geometry with respect to the mechanisms gov
ing convective structures.

A. Symmetric structures

The instability displayed by straight rolls agrees with t
skewed-varicose instability regarding both onset and fo
~Fig. 2!. On the other hand, foci display a steady o
centering of focus singularities starting from«50 and grow-
ing with « @14–19# ~Fig. 5!. This does not fit with a large
scale instability starting from a definite onset above
convective threshold. However the amplification of the o
centering indicates a loss of stiffness that recovers the m
features brought about by the focus instability@9,10#.

Both these symmetric structures show, at most, very w
changes of their spatiotemporal behaviors in open contain
This agrees with the conclusions of our analysis of their s
bility: symmetric structures are~nearly! insensitive to mean
flow boundary conditions.

B. Asymmetric structures

In open containers, the analysis of focus pairs predic
weakening of the main dangerous mode: a focalization of
mean flow on the axis joining foci to the pattern cent
Evidencing directly this effect is not an easy task, owing
the difficulties inherent to mean flow measurement or m
flow visualization@16#, and we did not achieve it. Instead
we have checked its consequences by comparing our ob
vations with the predictions regarding both the onset of ti
dependence and the wave-number field.
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The main findings of our analysis are a delay of the on
of time dependence and an equality of the wave number
the pattern center and at the foci@Fig. 14~b!#. Both are nicely
corroborated by our experiment~Fig. 7!. However, for the
sake of a better accuracy of this comparison, we take
account in Appendix D the perturbations induced by the
nular sheet on the mean flow. It gives rise to an additio
backflow on the line joining the focus to the pattern cent
The maximal wave number is then reached at the pat
center only, so that local instability and defect nucleati
should occur there, in agreement with Fig. 8. On the ot
hand, its valuekpc should be slightly larger than that dis
played at the focikf , as confirmed by our data~Fig. 7!.

After the first defect nucleation has occurred, patterns
not exhibit periodic dynamics as in closed containers@13#
but restabilize in another focus pair involving one less r
pair @Fig. 6~c!#. A similar behavior may be observed o
straight rolls as they encounter the skewed-varicose insta
ity when increasing« ~cf. Sec. III B and Refs.@17# and@29#!.
In the present case, restabilization may be understood b
slight dependence of the parametera governing the local
stability with respect to the mean wave number@see Eq.
~19!#: removing one roll pair may then be sufficient to redu
a below the critical value at which defect nucleation is tri
gered @13#. In addition, sincea is proportional to«, the
higher« is at the first defect nucleation, the larger the redu
tion of a may be and the better are the chances of observ
restabilization. In agreement with this statement, exp
ments reveal that defect nucleation occurs too low in clo
containers for allowing restabilization and sufficiently hig
in open containers for achieving it. The experimental fe
tures of focus pairs and especially their sensitivity to me

FIG. 15. Sketch of the threshold of time-dependence of vari
structures in closed and open containers. Straight rolls, foci,
focus pairs are labeled SR, F, and FP, respectively. Notice the
sitivity ~independence! of focus pairs and textures~straight rolls and
foci! to the type of container. Notice also the similarity of th
threshold of time dependence of focus pairs and textures with
of foci in closed containers and that of straight rolls in open on
Opening containers thus changes the status of asymmetric struc
from that of most unstable structures to that of nearly most sta
structures.
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370 55A. POCHEAU AND F. DAVIAUD
flow boundary conditions are thus well recovered from
CN equations.

C. The role of symmetry

Both experiment and analysis agree with a link betwe
the sensitivity to mean flow boundary conditions and
symmetry of the wave-vector field. This correlation
sketched in Fig. 15 by drawing a comparison between
onset of time dependence of structures in the two kinds
containers. We address below its origin and its conseque
by investigating the essential role of symmetry with resp
to the route to time dependence.

1. Continuous symmetry

Continuous symmetry of the phase field precludes the
istence of mean flows~F50! and thus denies to mean flo
boundary conditions any influence on symmetric sta
These boundary conditions might however influence
symmetry-breaking instabilities, either the local ones or
large-scale ones.

In straight rolls, local instabilities are rejected since t
wave number is selected: all rolls are unstable or none ar
foci, local unstable wave numbers might arise since wa
number selection is only reached at large distance from
focus center. However, they would then be encountered
all azimuths so that the growth of instability could be co
patible with the preservation of rotational symmetry. W
note that such rotationally invariant dynamical states are
tually observed as phase-traveling waves in simulations@36#
and experiments@19,32# in large aspect ratio container
However, since they do not modify pattern geometry, th
stand outside the scope of the problem addressed here.

Only large-scale instabilities can thus yield a time dep
dence of symmetric geometries. Although they involve me
flows, our analysis has shown that their onsets are inde
dent on mean flow boundary conditions.

2. Asymmetry

In contrast with symmetric structures, asymmetric str
tures involve some mean flows, even in steady states:FÞ0.
As shown on the model of asymmetric pattern, the foc
pair, these flows raise phase gradients not only through t
rotational part but also through their potential part. This
sults in a localization of pattern stress whose features dep
on the mean pressure gradient and thus on mean flow bo
ary conditions.

Owing to the low magnitude of mean flows, the cons
quence of pattern stress might be thought to be negligi
They are however enhanced by the aspect ratio owing to
cumulative effect of mean flow stretch. At least at lo
Prandtl number and moderate aspect ratio, they then suc
in inducing local instabilityprior to large-scale instability.

3. Correlation between symmetry and bifurcation

The difference of behaviors of symmetric structures co
pared to asymmetric ones traces back to the vanishin
their mean flows~F50!. This important degeneracy inhibit
the retroaction of large scales~F! on small scales~k! and
prevents localization of pattern stress. This results in a m
e
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fication of both the route to time dependence~symmetry al-
lows at most a slow evolution of wave number; asymme
enhances phase gradients! and the bifurcation to instability
~symmetry induces large-scale instability; asymmetry tr
gers local instability!.

As confirmed by the different sensitivities to mean flo
boundary conditions, the above distinctions especially in
cate that symmetric and asymmetric structures are not ph
cally equivalent~Fig. 15!. Of course, this does not mean th
the physical ingredients governing these structures are di
ent ~e.g., primarily instability, mean Reynolds stresses, fl
incompressibility, etc.! but that the interplay between them
generates different mechanisms and then different behav
Accordingly, asymmetries or distortions, whatever th
magnitude, stand as essential modes of extended patter

A consequence of these statements is that, despite
apparent similarity, foci and focus pairs refer to differe
physical mechanisms. In particular, focus pairs cannot
viewed as the mere juxtaposition of two foci nor can
asymmetric or a distorted structure be analyzed in terms
symmetric structures. By contrast, the similarity between
behaviors of textures and focus pairs in both closed and o
containers validates the latter as a good candidate for m
eling textures. This suggests that, at least for moderate as
ratios, focus pair might actually capture the essential mec
nisms governing textures dynamics.

VI. CONCLUSION

Convective structures are governed by only two hydro
namical scales, the roll scale and the pattern scale. They
provide a minimal model for studying scale interactions. W
have been studying it by focusing on model structures
volving simple geometries.

Although different on a number of points, model stru
tures display such similar features in usual containers
one can hardly decide which of them accurately models t
tures. In order to improve their comparison, we have int
duced a change of boundary condition by separating
mean flow boundary from the roll flow boundary. This ma
the boundary of the convective domain permeable to m
flows and therefore transformed the usual ‘‘closed’’ conta
ers into ‘‘open’’ ones regarding these flows.

The change of container has been applied while keep
the same convective structures and thus the same mean
sources. It has resulted in two opposite behaviors: stra
rolls and axisymmetrical rolls~foci! kept the same behavior
focus pairs and textures displayed a spectacularly large d
of time dependence. The former structures involve a conti
ous symmetry of the wave-vector field and the latter str
tures none. Their respective sensitivity to the change of m
flow boundary condition has been recovered analytically
exploiting the consequences of the existence or of the fai
of such symmetry. The origin of the sensitivity differenc
traces back to the degeneracy displayed in symmetric st
tures through the vanishing of mean flows. This actually
couples not only steady states but also their onset of in
bility from mean flow boundary conditions. On the oppos
side, asymmetry generates mean flows that enhance p
gradients by cumulative roll stretch. The resulting localiz
tion of pattern stress then succeeds in triggering local in
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55 371SENSITIVITY OF CONVECTIVE STRUCTURES TO . . .
bility prior to large scale instability, at least in modera
aspect ratio cells and at low Prandtl number.

The opposite behaviors of symmetric and asymme
structures show that their physics actually differ. In partic
lar, textures cannot be modeled by foci but, to the pres
analysis, by focus pairs. This points to the physical mec
nism governing focus pairs~see Sec. IV C! as a relevant
prototype of those at work in textures, at least for the m
erate aspect ratios addressed here.

The fact that our experiment has been performed at m
erate aspect ratio raises some questions regarding patter
namics in larger cells. Then more substructures than in
present case would interact, some of them being cut
boundaries, the other being located in the bulk. The form
structures are bound by impermeable walls and the latte
permeable ones regarding mean flows. Do they behave
closed containers or rather as in open ones? Do they s
the same dynamics or not? What is their respective sens
ity to a change of mean flow boundary condition? Answer
these questions would improve our understanding of st
tures interactions and of the influence of boundary on
bulk dynamics.

Both our observations and analysis have finally reveale
link between the geometry and the dynamics of convec
structures. According to it, distortion is a dangerous mo
which, whatever its magnitude, modifies the route to ti
dependence by bringing about a coupling between large
small scales. This property traces back to the nonloca
generated in distorted states but inhibited in symmetric on
Here, this nonlocality is provided by hydrodynamics.
other systems, other long-range interactions induced by e
tromagnetic fields or chemical mediators may play this ro
Then, the present system might appear as a minimal m
for the understanding of the inner mechanisms govern
their organization or their dynamics.

APPENDIX A: THE CROSS-NEWELL EQUATIONS

The Cross-Newell equations describe the basic inte
tions between the phase field and the mean flow field@8#.
They may be split into self and mutual interactions.

~i! Roll-roll interaction. Diffusive terms of the Boussines
equations give rise to a local interaction between neighb
ing rolls. This results in an anisotropic diffusion of the ro
position and thus of the phase field@6#.

~ii ! Roll action upon mean flows. It corresponds to t
Siggia-Zippelius mechanism by which distorted rolls beha
as local mean flow sources@26#. The resulting mean flow is
linked to its sources in a nonlocal way.

~iii ! Mean flow action upon rolls. It results from the a
vection of roll flows by the mean flow. Depending on th
boundary conditions imposed on the phase field, it res
either in phase drift, phase distortions, or both of th
@28,12#. Whereas the link between phase advection and
distortion islocal, the one between mean flow and roll pha
results from a spatial integration of the phase advection
is thusnonlocal.

~iv! Mean-flow–mean-flow interaction. It arises from th
diffusion and the selfadvection of the mean flow. It reduc
to vertical diffusion here~and thus, for a Poiseuille profile, t
a multiplication by a constant! for the following reasons:
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Since the horizontal spatial scale of the mean flow is la
compared to the cell depth, horizontal diffusion may be n
glected with respect to vertical diffusion. Length scales be
nondimensionalized with the cell depth and time scales w
the vertical diffusion time, the order of magnitude of me
flow self-advection, mean flow diffusion, and mean flo
sources are, according to Eq.~2!, Pr21R21F2, F, and
Pr21R21«2, respectively. Then, for Pr.1, R.10, and«,1,
the condition of equilibrium between the two former term
and the latter givesF'Pr21 R21 «2. The effective Reynolds
number Re~F!, i.e., the ratio of the self-advection to diffu
sion, is then, Re~F!5O~Pr22R

22
«2!. In the present case o

extended cells~R@1! and in the vicinity of the convective
threshold~«!1!, it is quite small so that the self-advection o
F may be neglected compared to its diffusion.

When taken into account simultaneously, these inter
tions yield the Cross-Newell equations~1! and~2! where the
first equation~1! is a phase-diffusion equation supplement
by an advection term of the phase by the mean flow and
second equation~2! expresses the Siggia-Zippelius mech
nism.

APPENDIX B: CONTINUITY OF THE PRESSURE FIELD
AT THE INTERFACE

The hydrodynamical interface (R8,r,R1) separates an
inner zone (r,R2) from an outer zone (R1,r,R8) @Fig.
1~a!#. Two pressure fieldsP i andPo have been defined by
Eqs.~11! and~12! in each of them. Our purpose is to eval
ate the corresponding pressure dropdP across their inter-
face:

dP5Po~R
1,u!2P i~R

2,u!. ~B1!

This will be performed first by determining a continuou
matching of the pressure gradients“P in the interface, sec-
ond by evaluating its order of magnitude, and finally by d
ducing the corresponding pressure dropdP.

1. Continuous matching of the pressure gradients

The mean flowF may be split in the whole system into
rotational partR and a potential part“P, both divergence-
free:

F5R1“P. ~B2!

This splitting is not unique but examples are~ Fir ,“P i)
in the inner zone and~For ,“Po) in the outer zone, as de
fined in Sec. IV C 3. SinceF is continuous in the whole
system, determining a continuous matching“P of the pres-
sure gradients“P i and“Po in the interface turns out to
construct an explicit continuous expression of the rotatio
flow R in such a way that it corresponds toFir in the inner
zone andFor in the outer zone.

Let us labelRr andRu its radial and orthoradial compo
nents and introduce the following coupling between me
flow sources and vertical vorticity:

Rr52
r

6
xVzcot~2u!, ~B3!
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wherex is a function ofr , a priori undetermined. In orde
for the vertical vorticity ofR to be equal toVz , the function
Ru must satisfy

rRu5E
0

r

r S 11
x

3DVzdr. ~B4!

In the convective domain, the choicex51 yieldsR5Fir .
In the conductive domain, relation~B3! shows that the radia
componentRr of R is always zero sinceVz vanishes in the
outer zone. Its orthoradial componentRu can be forced to
vanish too, by choosingx in the interface so tha
Ru(R1 ,u)50. Then, in the outer zone,R5For50.

Different choices ofx satisfying the above requiremen
may be made inside the interface. The relevance of this
gree of freedom is ensured by the fact that their differen
correspond to potential flows whose pressure drop~the cir-
culation of the corresponding flow between the two sides
the interface! vanishes, owing to~B3! and ~B4!.

2. Order of magnitude of the pressure gradient in the interface

We seek to deduce the order of magnitude of“P from
those ofF andR in the interface. At first, we assume that th
interface does not increase the order of magnitude of
mean flow in the inner zone and outer zone. On the contr
the roll compression would be larger than usual so that
threshold of time dependence would be much smaller tha
closed containers. This scenario is rejected by experime
observations~see Sec. III D 2!. ThenF is still O(a2/R) on
both sides of the interface so that its shear rate isO(a2/R).

Since the spatial derivatives areO(1) inside the interface
the order of magnitude ofF andR inside it are the same a
that of their vertical vorticityVzI . This vorticity results from
three different phenomena: roll distortion, mean flow she
and roll amplitude variations. The first two contribute toVzI
to the same order of magnitudea2/R. The contribution of the
last may be easily estimated by emphasizing that rolls
normally to the interface. Then, locally, they look like a s
of parallel rolls fading away a normal boundary. For reaso
of symmetry, the mean flow that they produce by amplitu
decay must then be parallel to their axis and invariant
translation along the boundary so that its vertical vortic
vanishes. Put together, these estimates yieldVzI , F, R, and
“P to be at leastO(a2/R) in the interface.

3. Pressure drop across the interface

Since the pressure gradient“P is well defined and con-
tinuous in the interface, evaluating the pressure dropdP
across it makes sense. Its order of magnitude is that of
pressure gradient,O(a2/R), multiplied by the interface
width, O(1) in the present problem, so thatdP5O(a2/R).
Since, in an extended cell,R215O(1021)5o(1), wefinally
obtain dP5o(a2), so that the pressure fieldsPo and P i
match continuously at second order in a:

Po~R,u!2P i~R,u!5o~a2!. ~B5!
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APPENDIX C: INTERFACE VORTICITY
AND MEAN FLOW SHEAR

In an open container, the net vertical vorticity in th
upper-right quarterDo of the cell (0,r,R8, 0,u,p/2)
may be deduced from relations~4!–~6!:

E E
Do

VzdS5
v

4
1v I . ~C1!

Sincev I52v/3, the interface vorticity dominates the vert
cal vorticity produced in the bulk and imposes a negat
sign of the net vertical vorticity in the domainDo . The cir-
culation of the mean flow fieldF along the boundaries ofDo
must then be negative@Fig. 13~a!#. This is in contrast with
the case of closed containers, where the analogous circ
tion along the upper-right quarterDc(0,r,R, 0,u
,p/2) is positive@Fig. 12~a!#.

At some places of the boundary ofDo , the mean flow
must therefore point in a direction opposite to that display
in a closed container. Figure 13 shows that this mainly
curs in the outer zone. In the remaining parts, especially
the inner zone, the amplitude of the mean flow, and in p
ticular the back flow, is reduced, but the direction is kept

The mean flow shear at the interface results from the la
variations of the orthoradial componentF•eu across the in-
terface. Their origin may be understood as follows. Ma
conservation implies continuity ofF•r across the interface
Equating the circulation of the mean flow on an infinitesim
contour in the interface to the flux of vertical vorticity the
yields

@F~R1!2F~R2!#eu5
v I

R
~C2!

so that the shear is directly produced by the interface vor
ity v I . Its magnitude isO(a2/R) sincev I5O(v)5O(a2).
It is thus of the same order as the mean flowF and modifies
it considerably, as shown by the comparison between F
12 and 13.

The interface vorticity thus produces local effects~shear
at the interface! but also important nonlocal effects~mean
flow direction, decrease of the back flow! of primary impor-
tance for the transition to time dependence.

APPENDIX D: INFLUENCE OF THE SHEET
ON MEAN FLOWS

Apart from local vorticity sources produced at the ro
boundaries by roll amplitude decay, the sheet induces a
cous shear in the conductive domain that decreases the
driven by pressure gradients@Fig. 1~c!#. This additional ef-
fect may be easily evaluated by assuming a Poiseuille pro
for the mean flow. This results in the following relation b
tween the potential mean flows in the inner and outer zo
Fip andFop and the pressure fieldP:

Fip5“P, Fop5t“P, t5123d~12d!, ~D1!

whered5d1/d is the relative distance of the sheet to a ho
zontal plate andt a transmission factor.
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The sheet perturbation may thus be handled by renorm
izing the pressure fields in both the inner and outer zones
P i5P, Po5tP, respectively. Since, the actual pressure fi
P is continuous~see Appendix B!, this means introducing a
virtual pressure drop at the interfacePo2P i52(1
2t)P i . The remaining boundary conditions of the syste
being unchanged, the basic state of instability can be fo
straightforwardly as in Sec. IV C 4. Only the value ofb is
modified:

b52
11r24

22~12t !~12r24!
. ~D2!

In the limit r@1, b simplifies tob521/~11t! which, for
t,1, is smaller than the value2 1

2 expected without shee
perturbation (t51). This indicates the presence of an ad
tional back flow on the line joining focus and pattern cent
ce
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which increases roll compression and lowers the onse
time dependence. Sinceb,2 1

2, the maximum wave numbe
is reached at the pattern center so that a localized instab
should first occur there. Its value is

k~0,0!5koS 11
12t

11t
DcD . ~D3!

As expected,t51 corresponds to fully open containe
@k(0,0)5ko#, and t50 to closed containers [k(0,0)
5ko(11Dc)#.

In the present experiment,d51
4 andr52, so thatt5 7

16 and
b520.72. Taking forko the expression determined close
onset of convection given by Manneville and Piquemal@35#
and recalling thatDc5a2a/@21a(11p)# with a54.19« at
Pr50.71, p'0, anda2'1

2 @9,10#, we obtain, for the wave
number at the pattern center, the curve plotted in Fig. 7.
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